
Signals

DA 623 Jan - May 2023 IIT Guwahati

Instructors: Neeraj Sharma

Computing with

Lecture-23-24[17-20-Mar]

Recap

Fourier Transform

Discrete Fourier Transform

● How do we proceed?

(4)
Can this be
discretized?

(3)
Integral to
summation?

(2)
Use Finite samples?

(1)
This will be
discretized?

Discrete Fourier Transform
● How do we proceed?

(4)
Can this be
discretized?

(3)
Integral to
summation?

(2)
Use Finite samples?

(1)
This will be
discretized?

● Let’s proceed through visualization.

● Continuous-t
ime signal

● sampling

● sampling

● sampling

● truncation

● sampling

● truncation

● sampling

● truncation

● periodization

● sampling

● truncation

● periodization

● sampling

● truncation

● periodization ● Discrete Fourier Transform
(DFT)

Steps

Result

Discrete Fourier Transform
(DFT)

● f(t) is (effectively) finite length in time and frequency

● Duration (length): L

● Bandwidth = 2B (-B to +B)

tn = nTs , Ts = L/N = 1/2B

Assumptions:

t1 t2 tN t3

f1

f2

f3

f4

fN

Signal
Function
representation

Data
Vector representation

In 2-D:

Goto:
jupyter-notebook

In N-D:

Identity basis

In N-D:

Basis transformation

Notation,DFT

- these are the N roots of unity in the
complex plane

Stacking all roots into a vector,

Additional notation,

Notation,DFT

- these are the N roots of unity in the
complex plane

Stacking all roots into a vector,

Additional notation,

Notation,DFT

DFT

Data
vector

Fourier Transform
vector

DFT

DFT
Square Matrix

DFT Computation

● A lot of multiplications
and additions as the
signal length increase.

● Is there a way to
compute it efficiently?

DFT Computation using FFT

Proceeds by
making group of
even and odd
indices in the
input

FFT: Fast Fourier
Transform
An algorithm for faster computation of DFT.

● Visualizing the
Real [DFT]

● Cooley-Tukey algorithm calculates the DFT directly with fewer summations

● The trick to the Cooley-Tukey algorithm is recursion.

● Split the matrix we wish to perform the FFT on into two parts: one for all elements
with even indices and another for all odd indices.

● We then proceed to split the array again and again until we have a manageable array
size to perform a DFT (or similar FFT) on.

● We can also perform a similar re-ordering by using a bit reversal scheme, where we
output each array index's integer value in binary and flip it to find the new location of
that element.

● Complexity to ∼O(N logN) https://vanhunteradams.com/FFT/FFT.html

● https://dazzling-jang-471a34.netlify.app/

● https://jojo.ninja/fluctus/

● More here:
https://github.com/willianjusten/awesome-audio-visualiz
ation

A fast means for Fourier transform implies lots of
applications! Let’s look at some funs ones!

https://dazzling-jang-471a34.netlify.app/
https://jojo.ninja/fluctus/
https://github.com/willianjusten/awesome-audio-visualization
https://github.com/willianjusten/awesome-audio-visualization

DFT
Square Matrix

Data
vector

Fourier Transform
vector

Summary

● Matrix multiplication is O(N2) computations

● This is a lot of computation for N>>1, as usual case

● Linear scaling is desired in most applications

● Fast Fourier Transform (FFT) algorithm enables computing DFT in O(N logN)

Resources

