Computing with Signals

Recap

Fourier Transform

$$
\hat{f}(s)=\int_{-\infty}^{\infty} e^{-2 \pi i s t} f(t) d t
$$

Discrete Fourier Transform

- How do we proceed? (1)

Discrete Fourier Transform

- How do we proceed?

- Let's proceed through visualization.

- sampling

- sampling
- truncation

- sampling

- truncation

- sampling

- truncation
- periodization

- sampling
- truncation

Steps

- sampling
- truncation

- periodization

Result

- Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

$$
\begin{aligned}
F\left(s_{m}\right) & =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i s_{m} t_{n}} \\
& =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i n m / 2 B L} \\
& =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i n m / N}
\end{aligned}
$$

Assumptions:

- $f(t)$ is (effectively) finite length in time and frequency
- Duration (length): L
- Bandwidth $=2 B(-B$ to $+B)$

$$
t_{n}=n T_{s}, \quad T_{s}=L / N=1 / 2 B
$$

Signal
Function

$\left[\begin{array}{l} \\ f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ \vdots \\ \vdots \\ \vdots \\ \\ f_{N}\end{array}\right]$
Data
Vector representation

In 2-D:

Goto:
jupyter-notebook

In N-D:

$$
\vec{f}=\langle\vec{f}, \vec{x}\rangle \frac{\vec{x}}{\|\vec{x}\|^{2}}+\langle\vec{f}, \vec{y}\rangle \frac{\stackrel{\rightharpoonup}{y}}{\|\vec{y}\|^{2}}
$$

$$
\begin{aligned}
& \text { In N-D: } \\
& \begin{aligned}
\vec{f} & =\langle\vec{f}, \vec{x}\rangle \frac{\vec{x}}{\|\vec{x}\|^{2}}+\langle\vec{f}, \vec{y}\rangle \frac{\vec{y}}{\|\vec{y}\|^{2}} \\
& =\langle\vec{f}, \vec{u}\rangle \frac{\vec{u}}{\|\vec{u}\|^{2}}+\langle\vec{f}, \vec{v}\rangle \frac{\vec{v}}{\|\vec{v}\|^{2}}
\end{aligned}
\end{aligned}
$$

DFT

$$
\begin{aligned}
F\left(s_{m}\right) & =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i s_{m} t_{n}} \\
& =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i n m / N}
\end{aligned}
$$

Notation,

$$
\omega=e^{2 \pi i / N}
$$

DFT

$$
\begin{aligned}
F\left(s_{m}\right) & =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i s_{m} t_{n}} \\
& =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i n m / N}
\end{aligned}
$$

Notation,

$$
\omega=e^{2 \pi i / N}
$$

Stacking all roots into a vector,

$$
\omega^{k}=\left(1, \omega^{k}, \omega^{2 k}, \ldots, \omega^{(N-1) k}\right)
$$

- these are the N roots of unity in the complex plane

Additional notation,

$$
\omega^{-k}=\left(1, \omega^{-k}, \omega^{-2 k}, \ldots, \omega^{-(N-1) k}\right)
$$

DFT

$$
\begin{aligned}
F\left(s_{m}\right) & =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i s_{m} t_{n}} \\
& =\sum_{n=0}^{N-1} f\left(t_{n}\right) e^{-2 \pi i n m / N}
\end{aligned}
$$

Notation,

$$
\omega=e^{2 \pi i / N}
$$

Stacking all roots into a vector,

$$
\omega^{k}=\left(1, \omega^{k}, \omega^{2 k}, \ldots, \omega^{(N-1) k}\right)
$$

- these are the N roots of unity in the complex plane

$$
\mathbf{F}[m]=\sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-k m}=\sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2 \pi i k m / N}
$$

$$
\boldsymbol{\omega}^{-k}=\left(1, \omega^{-k}, \omega^{-2 k}, \ldots, \omega^{-(N-1) k}\right)
$$

DFT

$$
\mathbf{F}[m]=\sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-k m}=\sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2 \pi i k m / N}
$$

DFT

$$
\mathbf{F}[m]=\sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-k m}=\sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2 \pi i k m / N}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
F[0] \\
F[1] \\
F[2] \\
\vdots \\
F[N-1]
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1 \cdot 1} & \omega^{-1 \cdot 2} & \cdots & \omega^{-(N-1)} \\
1 & \omega^{-2 \cdot 1} & \omega^{-2 \cdot 2} & \cdots & \omega^{-2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(N-1) \cdot 1} & \omega^{-(N-1) \cdot 2} & \cdots & \omega^{-(N-1)^{2}}
\end{array}\right)\left(\begin{array}{c}
f[0] \\
f[1] \\
f[2] \\
f[N-1]
\end{array}\right)
\end{aligned} \begin{gathered}
\\
\begin{array}{l}
\text { Fourier Transform } \\
\text { vector }
\end{array} \\
\begin{array}{c}
\text { DFT } \\
\text { Vata } \\
\text { vector }
\end{array}
\end{gathered}
$$

DFT Computation

N	DFT (real multiplies)	DFT (real additions)
	$4 N^{2}$	
$2 N(2 N-1)$		
2	16	12
4	64	56
8	256	240
16	1,024	992
32	4,096	4,032
64	16,384	16,256
128	65,536	65,280
256	262,144	261,632
512	$1,048,576$	$1,047,552$
1,024	$4,194,304$	$4,192,256$

- A lot of multiplications and additions as the signal length increase.
- Is there a way to compute it efficiently?

DFT Computation using FFT

N	DFT (real multiplies)	DFT (real additions)	FFT (real multiplies)	FFT (real additions)
	$4 N^{2}$		$2 N(2 N-1)$	$2 N \log _{2} N$
$3 N \log _{2} N$				
2	16	12	4	6
4	64	56	16	24
8	256	240	48	72
16	1,024	992	128	192
32	4,096	4,032	320	480
64	16,384	16,256	768	1,152
128	65,536	65,280	2,792	2,688
256	262,144	261,632	9,096	6,144
512	$1,048,576$	$1,047,552$	20,480	13,824
1,024	$4,194,304$	$4,192,256$		30,720

N	$D F T$
2	
4	
8	
16	
32	
64	
128	
256	
512	
1,024	

FFT: Fast Fourier

 TransformAn algorithm for faster computation of DFT.

Proceeds by making group of even and odd indices in the input

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

- Visualizing the Real [DFT]

- Cooley-Tukey algorithm calculates the DFT directly with fewer summations
- The trick to the Cooley-Tukey algorithm is recursion.
- Split the matrix we wish to perform the FFT on into two parts: one for all elements with even indices and another for all odd indices.
- We then proceed to split the array again and again until we have a manageable array size to perform a DFT (or similar FFT) on.
- We can also perform a similar re-ordering by using a bit reversal scheme, where we output each array index's integer value in binary and flip it to find the new location of that element.
- Complexity to $\sim \mathrm{O}(\mathrm{N} \log \mathrm{N})$

A fast means for Fourier transform implies lots of applications! Let's look at some funs ones!

- https://dazzling-jang-471a34.netlify.app/
- https://jojo.ninja/fluctus/
- More here:
https://github.com/willianjusten/awesome-audio-visualiz ation

Summary

$\left(\begin{array}{c}F[0] \\
F[1] \\
F[2] \\
\vdots \\
F[N-1]\end{array}\right)=\left(\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1 \cdot 1} & \omega^{-1 \cdot 2} & \cdots & \omega^{-(N-1)} \\
1 & \omega^{-2 \cdot 1} & \omega^{-2 \cdot 2} & \cdots & \omega^{-2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(N-1) \cdot 1} & \omega^{-(N-1) \cdot 2} & \cdots & \omega^{-(N-1)^{2}}\end{array}\right)\left(\begin{array}{c}f[0] \\
f[1] \\
f[2] \\
\vdots \\
f[N-1]\end{array}\right)$

Fourier Transform
vector
DFT
Square Matrix

- Matrix multiplication is $O\left(N^{2}\right)$ computations
- This is a lot of computation for $N \gg 1$, as usual case
- Linear scaling is desired in most applications
- Fast Fourier Transform (FFT) algorithm enables computing DFT in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Resources

Gauss and the History of the

 Fast Fourier TransformMichael T. Heideman Don H. Johnson C. Sidney Burrus

introduction

THE fast Fourier transform (FFT) has become well known $\begin{aligned} & \text { coefficients of fourier series were developed at least a } \\ & \text { century earlier than had been thought previously. It this }\end{aligned}$ 1 as a very efficient algorithm for calculating the discrete year is accurate, it predates Fourier's 1807 work on harFourier Transform (DFT) of a sequence of N numbers. The monic analysis. A second reference to Gauss' algorithm

How the FFT Gained Acceptance
James W. Cooley

1. Introduction

The fast Fourier transform (FFT) has had a fascinating history, filled with ironies and enigmas. Even more appropriate for this meeting and its sponsoring professional society, it speaks not only of numerical analysis but also of the importance of the functions performed by professional societies.

